
Thread Safety in an MPI Implementation:
Requirements and Analysis

William Gropp and Rajeev Thakur ∗

Mathematics and Computer Science Division, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60439, USA

Abstract

The MPI-2 Standard has carefully specified the interaction between MPI and user-
created threads, with the goal of enabling users to write multithreaded programs
while also enabling MPI implementations to deliver high performance. However, a
simple reading of the thread-safety specification does not reveal what its implications
are for an implementation and what implementers must be aware (and careful) of.
In this paper, we describe and analyze what the MPI Standard says about thread
safety and what it implies for an implementation. We classify the MPI functions
based on their thread-safety requirements and discuss several issues to consider
when implementing thread safety in MPI. We had to deal with many of these
issues when designing and implementing thread safety in MPICH2. We use the
example of generating new context ids (required for creating new communicators) to
demonstrate how a simple solution for the single-threaded case cannot be used when
there are multiple threads and how a näıve thread-safe algorithm can be expensive.
We then present an algorithm for generating context ids that works efficiently in
both single-threaded and multithreaded cases.

Key words: Message Passing Interface (MPI), thread safety, MPI implementation,
multithreaded programming

1 Introduction

With SMP machines being commonly available and multicore chips becom-
ing the norm, the mixing of the message-passing programming model with

∗ Corresponding Author
Email addresses: gropp@mcs.anl.gov (William Gropp), thakur@mcs.anl.gov

(Rajeev Thakur).

Preprint submitted to Elsevier 14 December 2006

multithreading on a single multicore chip or SMP node is gaining increasing
attention. In such a mixed programming model, user programs consist of one
or more MPI processes on each SMP node or multicore chip, with each MPI
process itself comprising multiple threads. MPI implementations must be able
to support such programs efficiently.

The MPI-2 Standard has clearly defined the interaction between MPI and user-
created threads in an MPI program [7]. This specification was written with the
goal of enabling users to write multithreaded MPI programs easily, without
unduly burdening MPI implementations to support more than what a user
might need. However, a simple reading of the Standard does not reveal all the
implications the thread-safety specification has for an MPI implementation.
Indeed, implementing thread safety in MPI correctly and without sacrificing
too much performance requires careful thought and analysis.

In this paper, we discuss issues involved in developing an efficient thread-safe
MPI implementation. We had to deal with many of these issues when designing
and implementing thread safety in MPICH2 [8]. We first describe in brief the
thread-safety specification in MPI. We then classify the MPI functions based
on their thread-safety requirements. We discuss various issues to consider when
implementing thread safety in MPI. In addition, we discuss the example of
generating context ids and present an efficient, thread-safe algorithm for both
single-threaded and multithreaded cases.

Thread safety in MPI has been studied by a few researchers, but none of
them have covered the topics discussed in this paper. Protopopov and Skjel-
lum discuss a number of issues related to threads and MPI, including a design
for a thread-safe version of MPICH-1 [11,12]. Plachetka describes a mecha-
nism for making a thread-unsafe PVM or MPI implementation quasi-thread-
safe by adding an interrupt mechanism and two functions to the implemen-
tation [10]. Garćıa et al. present MiMPI, a thread-safe implementation of
MPI [4]. TOMPI [3] and TMPI [13] are thread-based MPI implementations,
where each MPI process is actually a thread. USFMPI is a multithreaded
implementation of MPI that internally uses a separate thread for communi-
cation [2]. A good discussion of the difficulty of programming with threads in
general is given in [6].

2 What MPI Says about Thread Safety

The MPI-2 Standard [7] specifies the interaction between MPI calls and threads.
MPI supports four “levels” of thread safety that a user must explicitly select:

MPI THREAD SINGLE A process has only one thread of execution.

2

MPI THREAD FUNNELED A process may be multithreaded, but only the thread
that initialized MPI can make MPI calls.

MPI THREAD SERIALIZED A process may be multithreaded, but only one thread
at a time can make MPI calls.

MPI THREAD MULTIPLE A process may be multithreaded and multiple threads
can call MPI functions simultaneously.

The user must call the function MPI Init thread to indicate the level of
thread-support desired, and the MPI implementation will return the level it
supports. The user program must meet the restrictions of the level supported.
The threads of a process are not separately addressable in MPI: A rank in
a send or receive call identifies a process, not a thread. A message sent to a
process may be received by any thread in that process that makes a matching
receive call.

An implementation is not required to support levels higher than
MPI THREAD SINGLE. In other words, an implementation is not required to be
thread safe. A fully thread-compliant implementation, however, will support
MPI THREAD MULTIPLE. A portable program that does not call MPI Init thread
should assume that only MPI THREAD SINGLE is supported.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls ex-
ecuted sequentially in some (any) order. Also, blocking MPI calls will block
only the calling thread and will not prevent other threads from running or
executing MPI functions. MPI also says that it is the user’s responsibility
to prevent races when threads in the same application post conflicting MPI
calls. For example, the user cannot call MPI Info set and MPI Info free on
the same info object concurrently from two threads of the same process; the
user must ensure that the MPI Info free is called only after MPI Info set
returns on the other thread. Similarly, the user must ensure that collective
operations on the same communicator, window, or file handle are correctly
ordered among threads.

Need for Multiple Levels of Thread Safety MPI requires the user to spec-
ify the level of thread safety needed because it comes at a cost. To demonstrate
the cost of always using a thread-safe MPI implementation even when thread
safety is not needed, we performed some experiments with MPICH2 (1.0.5).
We measured the ping-pong (blocking send, blocking receive) latency between
two single-threaded processes with MPICH2 configured in the following ways:

Single MPICH2 was configured with --enable-threads=single, which dis-
ables support for thread safety.

Runtime MPICH2 was configured with --enable-threads=multiple, which
supports MPI THREAD MULTIPLE, and an additional runtime check was en-

3

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 0 200 400 600 800 1000 1200

Tim
e (

us
)

Size (bytes)

Ping-Pong performance with Blocking Send/Receive

thread-multiple
thread-runtime

thread-single

Fig. 1. Overhead of using a fully thread-safe MPI implementation when not needed.

abled that sets the default level to MPI THREAD FUNNELED (no thread locks)
unless the user explicitly calls MPI Init thread requesting
MPI THREAD MULTIPLE.

Multiple MPICH2 was configured with --enable-threads=multiple, and
the default level was set to always be MPI THREAD MULTIPLE.

The tests were conducted on a single SMP box with the ch3:sock (TCP)
channel in MPICH2 (currently the only channel in MPICH2 that supports
thread safety). The results in Figure 1 show that the single and runtime cases
perform about the same (within measurement error); that is, the runtime check
for whether MPI THREAD MULTIPLE has been selected does not add overhead.
The multiple case, however, is significantly more expensive even though there
is only one thread. The cost of always acquiring and releasing thread locks
(because of the need to assume that there may be multiple threads) adds
significant overhead.

In the rest of this paper, we focus on the MPI THREAD MULTIPLE (fully multi-
threaded) case.

3 Thread-Safety Classification of MPI Functions

We analyzed each MPI function (about 305 functions in all) to determine its
thread-safety requirements. We then classified each function into one of several
categories based on its primary requirement. The categories and examples of
functions in those categories are described below; the complete classification
can be found in [1].

4

None Either the function has no thread-safety issues, or the function has
no thread-safety issues in correct programs and the function must have
low overhead, so an optimized (nondebug) version need not check for race
conditions. Examples: MPI Address, MPI Wtick.

Access Only The function accesses fixed data for an MPI object, such as
the size of a communicator. This case differs from the “None” case because
an erroneous MPI program could free the object in a race with a function
that accesses the read-only data. A production MPI implementation need
not guard this function against changes in another thread. This category
may also include replacing a value in an object, such as setting the name of
a communicator. Examples: MPI Comm rank, MPI Get count.

Update Ref The function updates the reference count of an MPI object.
Such a function is typically used to return a reference to an existing object,
such as a datatype or error handler. Examples: MPI Comm group,
MPI File get view.

Comm/IO The function needs to access the communication or I/O system in
a thread-safe way. This is a very coarse-grained category but is sufficient to
provide thread safety. In other words, an implementation may (and probably
should) use finer-grained controls within this category. Examples: MPI Send,
MPI File read.

Collective The function is collective. MPI requires that the user not call
collective functions on the same communicator in different threads in a
way that may make the order of invocation depend on thread timing (race).
Therefore, a production MPI implementation need not separately lock around
the collective functions, but a debug version may want to detect races. The
communication part of the collective function is assumed to be handled
separately through the communication thread locks. Examples: MPI Bcast,
MPI Comm spawn.

Read List The function returns an element from a list of items, such as an
attribute or info value. A correct MPI program will not contain any race that
might update or delete the entry that is being read. This guarantee enables
an implementation to use a lock-free, thread-safe set of list update and access
operations in the production version; a debug version can attempt to detect
improper race conditions. Examples: MPI Info get, MPI Comm get attr.

Update List The function updates a list of items that may also be read. Mul-
tiple threads are allowed to simultaneously update the list, so the update im-
plementation must be thread safe. Examples: MPI Info set,
MPI Type delete attr.

Allocate The function allocates an MPI object (may also need memory allo-
cation such as with malloc). Examples: MPI Send init, MPI Keyval create.

Own The function has its own thread-safety management. Examples are
“global” state such as buffers for MPI Bsend. Examples: MPI Buffer attach,
MPI Cart create.

Other Special cases. Examples: MPI Abort and MPI Finalize.

5

Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 2. An implementation must ensure that this example never deadlocks for any
ordering of thread execution.

This classification helps an implementation determine the scope of the thread-
safety requirements of various MPI functions and accordingly decide how to
implement them. For example, functions that fall under the “None” or “Access
Only” category need not have any thread lock in them. Appropriate thread
locks can be added to other functions.

4 Issues in Implementing Thread Safety

A straightforward implication of the MPI thread-safety specification is that an
implementation cannot implement thread safety by simply acquiring a lock at
the beginning of each MPI function and releasing it at the end of the function:
A blocked function that holds a lock may prevent MPI functions on other
threads from executing, which in turn might prevent the occurrence of the
event that is needed for the blocked function to return. An example is shown
in Figure 2. If thread 0 happened to get scheduled first on both processes,
and MPI Recv simply acquired a lock and waited for the data to arrive, the
MPI Send on thread 1 would not be able to acquire its lock and send its data;
this situation would cause the MPI Recv to block forever.

In addition to using a more detailed strategy than simply locking around ev-
ery function, an implementation must consider other issues that are described
below. In particular, it is not enough to just lock around nonblocking commu-
nication calls and release the locks before calling a blocking communication
call.

4.1 Updates of MPI Objects

A number of MPI objects, such as datatypes and communicators, have reference-
count semantics. That is, the user can free a datatype after it has been used
in a nonblocking communication operation even before that communication
completes. MPI guarantees that the object will not be deleted until all uses
have completed. A common way to implement this semantic is to maintain
with each object a reference count that is incremented each time the object is
used and decremented when the use is complete. In the multithreaded case, the

6

reference count must be changed atomically because multiple threads could
attempt to modify it simultaneously.

4.2 Thread-Private Memory

In the multithreaded case, an MPI implementation may sometimes need to
use global or static variables that have different values on different threads.
This cannot be achieved with regular variables because the threads of a pro-
cess share a single memory space. Instead, one has to use special functions
provided by the threads package for accessing thread-private memory (such
as pthread getspecific).

For example, thread-private memory is needed for keeping track of the “nesting
level” of MPI functions. MPI functions may be nested because the implemen-
tation of an MPI function may call another MPI function. For example, the
collective I/O functions may internally call MPI communication functions.
If an error occurs in the nested MPI function, the implementation must not
invoke the error handler. Instead, the error must be propagated back up to
the top-level MPI function, and the error handler for that function must be
invoked. This process requires keeping track of the nesting level of MPI func-
tions and not invoking the error handler if the nesting level is more than
one. (The implementation cannot simply reset the error handler before calling
the nested function because the application may call the same function from
another thread and expect the error handler to be invoked.) In the single-
threaded case, an implementation could simply use a global variable to keep
track of the nesting level; but in the multithreaded case, thread-private mem-
ory must be used.

Since accessing thread-private data requires a function call, implementations
must ensure that such access is minimized in order to maintain good efficiency.

4.3 Memory Consistency

Updates to memory in one thread may not be seen in the same order by an-
other thread. For example, some processors require an explicit write barrier
to ensure that all memory-store operations have completed in memory. The
lock and unlock operations for thread mutexes typically also perform the nec-
essary synchronization operations needed for memory consistency. However,
if an implementation avoids using mutex locks for higher performance and
instead uses other mechanisms such as lock-free atomic updates, it must be
careful to ensure that the memory updates happen as desired. This is a deep
issue, a full discussion of which must include concepts such as sequential con-

7

sistency and release consistency and is beyond the scope of this paper. Here,
it suffices to say that an implementation must ensure that, for any object that
multiple threads may access, the updates are consistent across all threads, not
just the thread performing the updates.

4.4 Thread Failure

A major problem with any lock-based thread-safety model is what happens
when a thread that holds a lock fails or is deliberately canceled (for example,
with pthread cancel). In that case, no other thread can acquire the lock, and
the application may hang. One solution is to avoid using locks and instead use
lock-free algorithms wherever possible (such as for the Update List category
of functions described in Section 3).

4.5 Performance and Code Complexity

A tradeoff in performance and code complexity exists between using a single,
coarse-grained lock and multiple, finer-grained locks. The single lock is rela-
tively easy to implement but effectively serializes the MPI functions among
threads. A finer-grained approach, using either multiple locks or a combination
of locks and lock-free methods, risks the occurrence of deadly embrace (when
two threads each hold one of the two locks that the other thread needs) as
well as considerable code complexity. In addition, if the finer-grained approach
requires multiple locks, it can be more expensive than if a single lock is used.
MPI functions that can avoid using locks altogether by using lock-free meth-
ods (for example, with atomic test-and-set or compare-and-swap instructions)
can provide a middle ground, trading a small amount of code complexity for
more concurrency in execution.

4.6 Thread Scheduling

Another issue is avoiding “busy waiting” or “spin locks.” In multithreaded
code, it is common practice to have a thread that is waiting for an event (such
as an incoming message for a blocking MPI Recv) to yield to other threads, so
that those threads can perform useful work. Thread systems provide various
mechanisms for implementing this, such as condition variables. One difficulty
is that not all events have the ability to wake up a thread; for example, if a low-
latency method is being used to communicate between different processes in
the same shared-memory node, there may be no easy way to signal the target

8

process or thread. This situation often leads to a tradeoff between latency and
effective scheduling.

5 An Algorithm for Generating Context Ids

In this section, we use the example of generating context ids (required for
creating new communicators) to show how a simple solution for the single-
threaded case cannot be used when there are multiple threads. We then present
an efficient algorithm for generating context ids in the multithreaded case.

5.1 Basic Concept and Single-Threaded Solution

A communicator in MPI has a notion of a “context” associated with it, which
is invisible to the user. This notion is implicit in a communicator and provides
a safe communication space so that a message sent on a communicator is
matched only by a receive posted on the same communicator (and not any
other communicator).

Typically, the context is implemented as an integer that has the same value
on all processes that are part of the communicator and is unique among all
communicators on a given process. For example, if the context id of a commu-
nicator ‘X’ on a process is 42, all other processes that are part of X must use 42
as the context id for X, and no other communicator on any of these processes
may use 42 as its context id. Processes that are not part of X, however, may
use 42 as the context id for some other communicator.

Whenever a new communicator is created (for example, with MPI Comm dup
or MPI Comm create), the processes in that communicator must agree on a
context id for the new communicator, following the constraints given above.
In the single-threaded case, generating a new context id is easy. One approach
could be for each process to maintain a global data structure containing the
list of available context ids on that process. In order to save memory space,
the list can be maintained as a bit vector, with the bits indicating whether the
corresponding context ids are available. A new context id can be generated by
performing an MPI Allreduce with the appropriate bit operator (MPI BAND).
The position of the lowest set bit can be used as the new context id.

9

5.2 Näıve Multithreaded Algorithm

The multithreaded case is more difficult. A process cannot simply acquire a
thread lock, call MPI Allreduce, and release the lock, because the threads on
various processes may acquire locks in different order, causing the allreduce
operation to hang because of a deadly embrace.

One possible solution is to acquire a thread lock, read the bit vector, release
the lock, then do the MPI Allreduce, followed by another MPI Allreduce to
determine whether the bit vector has been changed by another thread between
the lock release and the first allreduce. If not, then the value for the context id
can be accepted; otherwise, the algorithm must be repeated. This method is
expensive, however, as it requires multiple MPI Allreduce calls. In addition,
two competing threads could loop forever, with each thread invalidating the
other’s choice of context value.

5.3 Efficient Algorithm for the Multithreaded Case

We instead present a new algorithm that works efficiently in both single-
threaded and multithreaded cases. We have implemented this algorithm in
MPICH2 [8]. For simplicity, we present the algorithm only for the case of
intracommunicators. The pseudocode is given in Figure 3.

The algorithm uses a bit mask of context ids; each bit set indicates a con-
text id available. For example, 32 32-bit integers will cover 1024 context ids.
This mask and two other variables, lowestContextId and mask in use, are
stored in global memory (shared among the threads of a process). The vari-
able lowestContextId is used to store the smallest context id among the
input communicators of the various threads on a process that need to find a
new context id. The variable mask in use indicates whether some thread has
acquired the rights to the mask.

The algorithm works as follows. A thread wishing to get a new context id
first acquires a thread lock. If mask in use is set or the context id of the
thread’s input communicator is greater than lowestContextId, the thread
uses 0 as the local mask (for allreduce) and sets the flag i own the mask
to 0. Otherwise, it uses the current context-id mask as the local mask (for
allreduce) and sets the flags mask in use and i own the mask to 1. Then it
releases the lock and does an MPI Allreduce on local mask. This operation
is collective over the input communicator passed to the thread.

After MPI Allreduce returns, if i own the mask is 1, the thread acquires the
lock again. If the result of the allreduce (local mask) is not 0, it means all

10

/* global variables (shared among threads of a process) */

mask /* bit mask of context ids in use by a process */

mask_in_use /* flag; initialized to 0 */

lowestContextId /* initialized to MAXINT */

/* local variables (not shared among threads) */

local_mask /* local copy of mask */

i_own_the_mask /* flag */

context_id /* new context id; initialized to 0 */

while (context_id == 0) {
Mutex_lock ()
if (mask_in_use || MyComm ->contextid > lowestContextId) {

local_mask = 0
i_own_the_mask = 0
if (MyComm ->contextid < lowestContextId) {

lowestContextId = MyComm ->contextid
}

}
else {

local_mask = mask
mask_in_use = 1
i_own_the_mask = 1
lowestContextId = MyComm ->contextid

}
Mutex_unlock ()

MPI_Allreduce(local_mask , MPI_BAND , MyComm)

if (i_own_the_mask) {
Mutex_lock ()
if (local_mask != 0) {

context_id =
location of first set bit in local_mask

update mask
if (lowestContextId == MyComm ->contextid) {

lowestContextId = MAXINT;
}

}
mask_in_use = 0
Mutex_unlock ()

}
}
return context_id

Fig. 3. Pseudocode for generating a new context id in the multithreaded case (for
intracommunicators).

11

threads that participated in the allreduce owned the mask on their processes
and therefore the location of the first set bit in local mask can be used as
the new context id. If the result of the allreduce is 0, it means that some
thread did not own the mask on its process and therefore the algorithm must
be retried. The variable mask in use is reset to 0 before releasing the lock.

The logic for lowestContextId exists to prevent a livelock situation where
the allreduce operation always contains some threads that do not own the
mask, resulting in a 0 output. Since threads in our algorithm yield ownership
of the mask to the thread with the lowest context id, there will be a time when
all the threads of the communicator with the lowest context id will own the
mask on their respective processes, causing the allreduce to return a nonzero
result, and a new context id to be found. Those threads will disappear from
the contention, and the same algorithm will enable other threads to complete
their operation.

In this algorithm, the case where different threads of a process may have
the same input context id does not arise because it is not legal for multiple
threads of a process to call collective functions with the same communicator
at the same time, and all the MPI functions that need to create new con-
text ids (namely, the functions that return new communicators) are collective
functions.

We note that, in the single-threaded case, this algorithm is as efficient as the
basic algorithm described in Section 5.1, because the mutex locks can be com-
mented out and no extra communication is needed as the first allreduce itself
will succeed. Even in the multithreaded case, in most common circumstances,
the first allreduce will succeed, and no extra communication will be needed.

5.3.1 Correctness

Although we do not have a formal proof for the correctness of the algorithm,
we have implemented it in MPICH2 and tested it extensively. In addition,
one of our collaborators has tested the algorithm using formal verification
techniques—by writing a formal model for the algorithm in Promela and ver-
ifying it with the SPIN [5] model checker. He was not able to find any bugs,
deadlocks, or livelocks [9].

5.3.2 Performance

To study the performance of this algorithm with respect to the basic single-
threaded algorithm described in Section 5.1, we ran three experiments to mea-
sure the performance of the MPI function MPI Comm dup, in which the most
time-consuming operation is the generation of a new context id:

12

 2000

 1000
 800

 600
 500
 400

 300

 200

 100
 120 96 60 48 32 16 8 4 2

Tim
e (

mi
cro

se
c.)

Processes

Single
Multi: 1 thread

Multi: 2 threads

Fig. 4. Performance of the context id algorithm.

Single Using the single-threaded algorithm
Multi1 Using the multithreaded algorithm but each process has only one

thread
Multi2 Using the multithreaded algorithm with each process having two

threads, both calling MPI Comm dup (on different communicators)

In all cases, we called MPI Comm dup several times in a loop and measured
the average time for a single call. The experiments were run on a Myrinet-
connected Linux cluster using the ch3:sock channel (TCP) in MPICH2 1.0.5
(the only MPICH2 channel that currently supports thread safety). The results
are shown in Figure 4.

The difference between the single and multi1 cases shows that the overhead of
the multithreaded algorithm over the single-threaded case is negligible (the two
lines almost overlap). For small numbers of processes, the multi2 case is only
slightly more expensive than the single-threaded and multi1 cases because of
contention between the two threads for locks and resources. For larger numbers
of processes, however, the multi2 case in fact outperforms single and multi1.
The reason is that when one thread waits for communication, some of that time
is used by the other thread for its own MPI Comm dup. That is, the latency cost
gets overlapped (when one thread blocks, it does not block the entire process).
The results also indicate that the multithreaded algorithm does not require
any more communication than does the single-threaded algorithm.

13

5.3.3 Further Improvements

A refinement to this algorithm could be to allow multiple threads to have
disjoint masks; if the masks are cleverly picked, most threads would find an
acceptable value even if multiple threads were concurrently executing the algo-
rithm. Another refinement could be to use a queue of pending threads ordered
by increasing context id of the input communicator. Threads that are high in
this queue could wait on a condition variable or other thread-synchronization
mechanism that is activated whenever there is a change in the thread with
the lowest context id, either because a thread has found a new context id and
is removed from the queue or because a new thread with a lower context id
enters the function.

6 Conclusions and Future Work

Implementing thread safety in MPI is not simple or straightforward. Careful
thought and analysis are required in order to implement thread safety cor-
rectly and without sacrificing too much performance. In this paper, we have
discussed several issues that an implementation must consider when imple-
menting thread safety in MPI. Some of the issues are subtle, but nonetheless
important.

The default ch3:sock channel (TCP) in the current version of MPICH2 (1.0.5)
is thread safe. The default build of the ch3:sock channel supports thread safety,
but it is enabled only at run time if the user calls MPI Init thread with
MPI THREAD MULTIPLE. If not, no thread locks are called, and so there is no
penalty. We are working on performance improvements to the thread support
in MPICH2 and extending thread safety to all the communication channels.

Although many MPI implementations claim to be thread safe, no comprehen-
sive test suite exists to validate the claim. We plan to develop a test suite that
can be used to verify the thread safety of MPI implementations.

Acknowledgments

This work was supported by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of Energy, under Contract
DE-AC02-06CH11357.

14

References

[1] Analysis of thread safety needs of MPI routines.
http://www.mcs.anl.gov/mpi/mpich2/developer/design/threadlist.htm.

[2] Sadik G. Caglar, Gregory D. Benson, Qing Huang, and Cho-Wai Chu. USFMPI:
A multi-threaded implementation of MPI for Linux clusters. In Proceedings of
the IASTED Conference on Parallel and Distributed Computing and Systems,
2003.

[3] Erik D. Demaine. A threads-only MPI implementation for the development of
parallel programs. In Proceedings of the 11th International Symposium on High
Performance Computing Systems, pages 153–163, July 1997.

[4] Francisco Garćıa, Alejandro Calderón, and Jesús Carretero. MiMPI: A
multithread-safe implementation of MPI. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, 6th European PVM/MPI Users’ Group
Meeting, pages 207–214. Lecture Notes in Computer Science 1697, Springer,
September 1999.

[5] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[6] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, May 2006.

[7] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface, July 1997. http://www.mpi-forum.org/docs/docs.html.

[8] MPICH2. http://www.mcs.anl.gov/mpi/mpich2.

[9] Salman Pervez. Personal communication, 2006.

[10] Tomas Plachetka. (Quasi-) thread-safe PVM and (quasi-) thread-safe MPI
without active polling. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 9th European PVM/MPI Users’ Group Meeting,
pages 296–305. Lecture Notes in Computer Science 2474, Springer, September
2002.

[11] Boris V. Protopopov and Anthony Skjellum. A multithreaded message passing
interface (MPI) architecture: Performance and program issues. Journal of
Parallel and Distributed Computing, 61(4):449–466, April 2001.

[12] Anthony Skjellum, Boris Protopopov, and Shane Hebert. A thread taxonomy
for MPI. In Proceedings of the 2nd MPI Developers Conference, pages 50–57,
June 1996.

[13] Hong Tang and Tao Yang. Optimizing threaded MPI execution on SMP clusters.
In Proceedings of the 15th ACM International Conference on Supercomputing,
pages 381–392, June 2001.

15

The submitted manuscript has been created by UChicago Argonne, LLC, Op-
erator of Argonne National Laboratory (“Argonne”).

Argonne, a U.S. Department of Energy Office of Science laboratory, is oper-
ated under Contract No. DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly and display publicly, by or
on behalf of the Government.

16

